首页>JAVA>正文

【上海java培训】Java内存区域、分配机制和GC垃圾回收算法

时间:2018-04-04 12:16:21   来源:上海尚学堂   阅读:

一、前言

JAVA能够实现跨平台的一个根本原因,是定义了class文件的格式标准,凡是实现该标准的JVM都能够加载并解释该class文件,据此也可以知道,为啥Java语言的执行速度比C/C++语言执行的速度要慢了,当然原因肯定不止这一个,如在JVM中没有数据寄存器,指令集使用的是栈来保存中间数据…等,尽管Java的贡献者们为执行速度的提高想了各种办法,如JIT、动态编译器等。

 

二、Java内存区域

  了解Java GC机制,必须先清楚在JVM中内存区域的划分。在Java运行时的数据区里,由JVM管理的内存区域分为下图几个模块:

其中:

1,程序计数器(Program Counter Register):程序计数器是一个比较小的内存区域,用于指示当前线程所执行的字节码执行到了第几行,可以理解为是当前线程的行号指示器。字节码解释器在工作时,会通过改变这个计数器的值来取下一条语句指令。

  每个程序计数器只用来记录一个线程的行号,所以它是线程私有(一个线程就有一个程序计数器)的。

  如果程序执行的是一个Java方法,则计数器记录的是正在执行的虚拟机字节码指令地址;如果正在执行的是一个本地(native,由C语言编写 完成)方法,则计数器的值为Undefined,由于程序计数器只是记录当前指令地址,所以不存在内存溢出的情况,因此,程序计数器也是所有JVM内存区 域中唯一一个没有定义OutOfMemoryError的区域。

2,虚拟机栈(JVM Stack):一个线程的每个方法在执行的同时,都会创建一个栈帧(Statck Frame),栈帧中存储的有局部变量表、操作站、动态链接、方法出口等,当方法被调用时,栈帧在JVM栈中入栈,当方法执行完成时,栈帧出栈。

  局部变量表中存储着方法的相关局部变量,包括各种基本数据类型,对象的引用,返回地址等。在局部变量表中,只有long和double类型会占 用2个局部变量空间(Slot,对于32位机器,一个Slot就是32个bit),其它都是1个Slot。需要注意的是,局部变量表是在编译时就已经确定 好的,方法运行所需要分配的空间在栈帧中是完全确定的,在方法的生命周期内都不会改变。

  虚拟机栈中定义了两种异常,如果线程调用的栈深度大于虚拟机允许的最大深度,则抛出StatckOverFlowError(栈溢出);不过多 数Java虚拟机都允许动态扩展虚拟机栈的大小(有少部分是固定长度的),所以线程可以一直申请栈,知道内存不足,此时,会抛出 OutOfMemoryError(内存溢出)。

  每个线程对应着一个虚拟机栈,因此虚拟机栈也是线程私有的。

3,本地方法栈(Native Method Statck):本地方法栈在作用,运行机制,异常类型等方面都与虚拟机栈相同,唯一的区别是:虚拟机栈是执行Java方法的,而本地方法栈是用来执行native方法的,在很多虚拟机中(如Sun的JDK默认的HotSpot虚拟机),会将本地方法栈与虚拟机栈放在一起使用。

  本地方法栈也是线程私有的。

4,堆区(Heap):堆区是理解Java GC机制最重要的区域,没有之一。在JVM所管理的内存中,堆区是最大的一块,堆区也是Java GC机制所管理的主要内存区域,堆区由所有线程共享,在虚拟机启动时创建。堆区的存在是为了存储对象实例,原则上讲,所有的对象都在堆区上分配内存(不过现代技术里,也不是这么绝对的,也有栈上直接分配的)。

  一般的,根据Java虚拟机规范规定,堆内存需要在逻辑上是连续的(在物理上不需要),在实现时,可以是固定大小的,也可以是可扩展的,目前主 流的虚拟机都是可扩展的。如果在执行垃圾回收之后,仍没有足够的内存分配,也不能再扩展,将会抛出OutOfMemoryError:Java heap space异常。

  关于堆区的内容还有很多,将在下节“Java内存分配机制”中详细介绍。

5,方法区(Method Area):在Java虚拟机规范中,将方法区作为堆的一个逻辑部分来对待,但事实 上,方法区并不是堆(Non-Heap);另外,不少人的博客中,将Java GC的分代收集机制分为3个代:青年代,老年代,永久代,这些作者将方法区定义为“永久代”,这是因为,对于之前的HotSpot Java虚拟机的实现方式中,将分代收集的思想扩展到了方法区,并将方法区设计成了永久代。不过,除HotSpot之外的多数虚拟机,并不将方法区当做永 久代,HotSpot本身,也计划取消永久代。本文中,由于笔者主要使用Oracle JDK6.0,因此仍将使用永久代一词。

  方法区是各个线程共享的区域,用于存储已经被虚拟机加载的类信息(即加载类时需要加载的信息,包括版本、field、方法、接口等信息)、final常量、静态变量、编译器即时编译的代码等。

  方法区在物理上也不需要是连续的,可以选择固定大小或可扩展大小,并且方法区比堆还多了一个限制:可以选择是否执行垃圾收集。一般的,方法区上 执行的垃圾收集是很少的,这也是方法区被称为永久代的原因之一(HotSpot),但这也不代表着在方法区上完全没有垃圾收集,其上的垃圾收集主要是针对 常量池的内存回收和对已加载类的卸载。

  在方法区上进行垃圾收集,条件苛刻而且相当困难,效果也不令人满意,所以一般不做太多考虑,可以留作以后进一步深入研究时使用。

  在方法区上定义了OutOfMemoryError:PermGen space异常,在内存不足时抛出。

  运行时常量池(Runtime Constant Pool)是方法区的一部分,用于存储编译期就生成的字面常量、符号引用、翻译出来的直接引用(符号引用就是编码是用字符串表示某个变量、接口的位置,直接引用就是根据符号引用翻译出来的地址,将在类链接阶段完成翻译);运行时常量池除了存储编译期常量外,也可以存储在运行时间产生的常量(比如String类的intern()方法,作用是String维护了一个常量池,如果调用的字符“abc”已经在常量池中,则返回池中的字符串地址,否则,新建一个常量加入池中,并返回地址)。

6,直接内存(Direct Memory):直接内存并不是JVM管理的内存,可以这样理解,直接内存,就是 JVM以外的机器内存,比如,你有4G的内存,JVM占用了1G,则其余的3G就是直接内存,JDK中有一种基于通道(Channel)和缓冲区 (Buffer)的内存分配方式,将由C语言实现的native函数库分配在直接内存中,用存储在JVM堆中的DirectByteBuffer来引用。 由于直接内存收到本机器内存的限制,所以也可能出现OutOfMemoryError的异常。

三、Java对象的访问方式

一般来说,一个Java的引用访问涉及到3个内存区域:JVM栈,堆,方法区。

  以最简单的本地变量引用:Object obj = new Object()为例:

  • Object obj表示一个本地引用,存储在JVM栈的本地变量表中,表示一个reference类型数据;
  • new Object()作为实例对象数据存储在堆中;
  • 堆中还记录了Object类的类型信息(接口、方法、field、对象类型等)的地址,这些地址所执行的数据存储在方法区中;

在Java虚拟机规范中,对于通过reference类型引用访问具体对象的方式并未做规定,目前主流的实现方式主要有两种:

1,通过句柄访问(图来自于《深入理解Java虚拟机:JVM高级特效与最佳实现》):

通过句柄访问的实现方式中,JVM堆中会专门有一块区域用来作为句柄池,存储相关句柄所执行的实例数据地址(包括在堆中地址和在方法区中的地址)。这种实现方法由于用句柄表示地址,因此十分稳定。

2,通过直接指针访问:(图来自于《深入理解Java虚拟机:JVM高级特效与最佳实现》)

通过直接指针访问的方式中,reference中存储的就是对象在堆中的实际地址,在堆中存储的对象信息中包含了在方法区中的相应类型数据。这种方法最大的优势是速度快,在HotSpot虚拟机中用的就是这种方式。

四、Java内存分配机制

这里所说的内存分配,主要指的是在堆上的分配,一般的,对象的内存分配都是在堆上进行,但现代技术也支持将对象拆成标量类型(标量类型即原子类型,表示单个值,可以是基本类型或String等),然后在栈上分配,在栈上分配的很少见,我们这里不考虑。

  Java内存分配和回收的机制概括的说,就是:分代分配,分代回收。对象将根据存活的时间被分为:年轻代(Young Generation)、年老代(Old Generation)、永久代(Permanent Generation,也就是方法区)。如下图(来源于《成为JavaGC专家part I》,http://www.importnew.com/1993.html):

    

  年轻代(Young Generation):对象被创建时,内存的分配首先发生在年轻代(大对象可以直接 被创建在年老代),大部分的对象在创建后很快就不再使用,因此很快变得不可达,于是被年轻代的GC机制清理掉(IBM的研究表明,98%的对象都是很快消 亡的),这个GC机制被称为Minor GC或叫Young GC。注意,Minor GC并不代表年轻代内存不足,它事实上只表示在Eden区上的GC。

  年轻代上的内存分配是这样的,年轻代可以分为3个区域:Eden区(伊甸园,亚当和夏娃偷吃禁果生娃娃的地方,用来表示内存首次分配的区域,再 贴切不过)和两个存活区(Survivor 0 、Survivor 1)。内存分配过程为(来源于《成为JavaGC专家part I》,http://www.importnew.com/1993.html):

    

  1. 绝大多数刚创建的对象会被分配在Eden区,其中的大多数对象很快就会消亡。Eden区是连续的内存空间,因此在其上分配内存极快
  2. 当Eden区满的时候,执行Minor GC,将消亡的对象清理掉,并将剩余的对象复制到一个存活区Survivor0(此时,Survivor1是空白的,两个Survivor总有一个是空白的);
  3. 此后,每次Eden区满了,就执行一次Minor GC,并将剩余的对象都添加到Survivor0;
  4. 当Survivor0也满的时候,将其中仍然活着的对象直接复制到Survivor1,以后Eden区执行Minor GC后,就将剩余的对象添加Survivor1(此时,Survivor0是空白的)。
  5. 当两个存活区切换了几次(HotSpot虚拟机默认15次,用-XX:MaxTenuringThreshold控制,大于该值进入老年代)之后,仍然存活的对象(其实只有一小部分,比如,我们自己定义的对象),将被复制到老年代。

  从上面的过程可以看出,Eden区是连续的空间,且Survivor总有一个为空。经过一次GC和复制,一个Survivor中保存着当前还活 着的对象,而Eden区和另一个Survivor区的内容都不再需要了,可以直接清空,到下一次GC时,两个Survivor的角色再互换。因此,这种方 式分配内存和清理内存的效率都极高,这种垃圾回收的方式就是著名的“停止-复制(Stop-and-copy)”清理法(将Eden区和一个Survivor中仍然存活的对象拷贝到另一个Survivor中),这不代表着停止复制清理法很高效,其实,它也只在这种情况下高效,如果在老年代采用停止复制,则挺悲剧的

  在Eden区,HotSpot虚拟机使用了两种技术来加快内存分配。分别是bump-the-pointer和TLAB(Thread- Local Allocation Buffers),这两种技术的做法分别是:由于Eden区是连续的,因此bump-the-pointer技术的核心就是跟踪最后创建的一个对象,在对 象创建时,只需要检查最后一个对象后面是否有足够的内存即可,从而大大加快内存分配速度;而对于TLAB技术是对于多线程而言的,将Eden区分为若干 段,每个线程使用独立的一段,避免相互影响。TLAB结合bump-the-pointer技术,将保证每个线程都使用Eden区的一段,并快速的分配内 存。

  年老代(Old Generation):对象如果在年轻代存活了足够长的时间而没有被清理掉(即在几次 Young GC后存活了下来),则会被复制到年老代,年老代的空间一般比年轻代大,能存放更多的对象,在年老代上发生的GC次数也比年轻代少。当年老代内存不足时, 将执行Major GC,也叫 Full GC。  

   可以使用-XX:+UseAdaptiveSizePolicy开关来控制是否采用动态控制策略,如果动态控制,则动态调整Java堆中各个区域的大小以及进入老年代的年龄。

  如果对象比较大(比如长字符串或大数组),Young空间不足,则大对象会直接分配到老年代上(大对象可能触发提前GC,应少用,更应避免使用短命的大对象)。用-XX:PretenureSizeThreshold来控制直接升入老年代的对象大小,大于这个值的对象会直接分配在老年代上。

  可能存在年老代对象引用新生代对象的情况,如果需要执行Young GC,则可能需要查询整个老年代以确定是否可以清理回收,这显然是低效的。解决的方法是,年老代中维护一个512 byte的块——”card table“,所有老年代对象引用新生代对象的记录都记录在这里。Young GC时,只要查这里即可,不用再去查全部老年代,因此性能大大提高。


A. 引用计数器的方法
 
类似于Objective-C的内存回收,在OC语言不使用arc机制时,在创建对象,且被引用时候也会对计数器加1,使用完成后会调用release方法就会对计数器减1
 
jvm的这个算法也和上面的机制类似,但是他不能解决对象循环引用问题,也不好解决精确的计算,因为java程序开发,内存回收是对我们透明的,而OC是在代码层面自己去手动控制
 
B.根搜索算法
 
有向图算法,从GC Roots开始向下面搜索,搜索走过的路径叫做引用链接,当一个对象到达GC Roots没有任何引用链时,则这个对象就是不可达对象,就可以被回收,但是回收的时候会筛查出覆盖了finalze()方法且该对象finalze()方法没有被虚拟机调用过放入F-Queue队列然后执行F-Queue队列中对象的finalze()方法后如果该对象重新与某个GC Roots对象相关联,那么会将该对象从回收队列中移除
 
比如jvm中栈中指向堆中对象的指针就可以理解成一种GC Roots,因为栈中保存的是对象的指针指向的是堆中对象的首地址,当栈中的指针没有了那么堆中的对象就是不可达对象,就会被GC回收
 

五.jvm内存垃圾回收算法

1.复制算法 (用于新生代)
 
用于新生代从Eden区到survivor0或者survivor1移动的时候
 
从根集合扫描如果对象被引用,就会被copy到survivor0或者survivor1,然后剩下的都是不可达对象,就可以被回收掉,然后S0或者S1的对象就会到老年代中,在存活对象比较少的时候很高效并且不会产生内存碎片,就是内存需要额外划分一块survivor区出来
 
2.标记清除算法 (用于老年代)
 
就是使用根搜索算法扫描,如果可达就标记,当扫描完成后,就对未标记的对象进行回收,它不需要像复制算法一样,需要一个新的内存区,而且不会对对象进行copy,这种对对象存活的多的情况下很高效,但是这样会产生内存碎片
 
3.标记整理压缩算法 (用于老年代)
 
就是在标记清除算法之后对内存碎片进行整理,只是他会对没有清理的对象进行移动,代价高
 

六.内存容量配置建议

响应时间优先以及吞吐量优先类型的年轻代就尽可能设置大,老年代就可以设置小一点,因为在年轻代设置大了,那么年轻代的GC收集频率就会小,而且减少到达老年代的对象,最后尽量使老年代里面管理的对象是可用率高的,这样的话就会减少在年轻带的GC频次,并且防止进入老年代的对象过多触发FGC而stop-the-world

参考文章:https://www.cnblogs.com/hnrainll/archive/2013/11/06/3410042.html

感谢阅读上海尚学堂java文章,获取更多java内容或支持请点击  上海java培训
 
分享:0

电话咨询

客服热线服务时间

周一至周五 9:00-21:00

周六至周日 9:00-18:00

咨询电话

021-67690939
15201841284

微信扫一扫